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1) INTRODUCTION

This is a lightening quick introduction to Lattice Gauge Theory. Many topics are

omitted and those covered may at times be starved of detai!s. 1 shall make an effort to

remedy this problem by pointing you to appropriate references (A brief list of recommended

reading for background material iJ !1] [2] [3] [4] [5] [6] ). The aim here is to give you an

overview of the field.

The lattice formulation of Quantum Field Theory (QFT) can be exploited in many

ways. 1) We can derive the lattice Feynman rules and carry out weak coupling pertur-

bation expansions. The lattice then serves as a manifestly gauge invariant regu!arization

scheme, albeit one that is more complicated than standard continuum schemes. 2) Strong

coupling expansions: these give us useful qualitative information, but unfortunately no

hard numbers [71 . 3) The lattice theory is amenable to numerical simulations b~ which

one calculates the long distance properties of a strongly interacting theory from first prin-

ciples. The observable are measured aa a function of the bare coupling g and a gauge

invariant cut-off = ~, where a is the lattice spac!ng. The continuum (physical) behavior

is recovered in the limit a -0, at which point the lattice artifacts go to zero. This is the

more powerful use of lattice formulation, so in these lectures 1 will focus on setting up the

theory for the purpose of numerical simulations to get hard numbers.

The numerical techniques used in Lat~ice Gauge Theories have their roots in statistical

mechanics, ~o it is important to develop an intuition for the interconnection between

quantum mechanics and statistical mechanics. This will be the emphasis of the first lec~ure.

In the second lecture, I will review the essential ingredients of formulating QCD on the

Iatticc and discuss scaling and the conti~uum limit in lecture 3. In the last Iccturc 1 will

summarize the status of some of the main reslllts. 1 will also mention the bottlcrtecks and

possible directions for research.

1.1) (~onnectlon between (JM and Statistical Mcchanlca

The first step is to nntablisll the connection botwecn the partition function ar](i thr

trallsition amplitude in quantum nlwhanics. For fhis consider tl~r sirrlplr two stat,r systrrtl

(3,, (q h,) (1.1)



To set up the path integral, divide the time interval ~ into N intervals, r = N6r. Then

where ~~ ls) (s/ = 1 is

tation of the quantum

(configurations) of the

from the accumulation

T!le quantum mechanical amplitllde for finite time of propagation can be written m

a product of Feynman kernels K

81

a complete set of states. Eqn. (1.3) is the path integral represen-

ampiitude. The sum over states corresponds to all possible paths

system. The correct weight factor e–s where S is the action arises

of e–H6’ factors along the path [8) .

@(f,:) - ~...~ K(j ,s~..l) K(s~.-l, sn_2K(s 2,s1)X(sl, i) X(sl, i) (1.4)
an al

with a sum over intermediate states. K(sf, Si) is the trarlsition amplitude to go from state

s, at time r to the state sj i-t time r + dr. In the limit of small 6r, we can solve for the

kernel K(s,, s))

K(sit Sj) ~ (.g,[e
-H’r,s, ) N (gill - 6rao(03 -- AO1)ISJ)

(

1 -- ao6r a ,0+61--—
a(1A6r ! + aoc$r )

(1.5)

In the Schr&iinger representation both K and @ are classical c-nl~mbers. Us.iIIK eqn (1.5),

ti can also be written as

‘1’hc first and last factors are row and column vectors and depend on the choice of the final

and initiiil statfw ‘. i respectively,

To make the connection with statist.icai mechanics, rcgarci the kern(’1 K(s,, S, ) as an

irltvri~ct,ion between I]cighboring spins and rewrite the amplitude in qn. ( 1.4) as

x ~~~x r ‘(f’””)e ‘(’”’’”‘) o e ‘(”’”) (147)
#“tl •lf~

‘Y’(s,,s,)
/j (.~, .q,)2 , ,, ($, ~ ‘,)

t $).
(Is)
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where in a Slkf system with si the spin at site i, ~ would be the nearest neighbor coupling

and h the magnetic interaction. In eqn. (1.7), setting j = i and summing over i gives

z = ~ ~.. .x c-=(;’””) . . . C-=(””i) (1.9a)
i fin ●l

the partition function for a 1–dimensional Ising system with periodic boundary conditions

with T given in eqn. (1.8).

One purpose of defining the path integral in terms of T, eq. (1.7) was to introduce the

transfer matrix e“-T. T is the Hatiltonian for discrete Euclidean time measured in lattice

r The definition of ~ and h has to reproduce the nzatrix elements ofunits; N = lim6r+0 ~.

eqn. (1.5) and ~atisfy the definition (~le-T Ii) s K(J, i). A necessary condition for this is

that T be proportional to Jr. This is satisfied by

(S~ - 9j)2
Z = ~~...~expJr~[~aOA0A ~

i •~ ●l i
+ ao ‘gi ; ‘j)]) . (1.9b)

Note that each term of the cum in the exponent is the discretized Euclidean veraion of

the H~miltonian in eqn. (1.1). This association of the transfer matrix u the discrete time

evolution operator is an alternate route to go directly from QM to SM.

This completes a demonstration of the first connection; the relation of the partition

function to the QM amplitude xi 4(;, i) and the path integral. In fact the partition

function in SM is equivalent to the generating functional in QFT.

Let me now show the foliowing relationships: 1) the free energy in SM corresponds

to the ground state energy in QM; 2) correlation functions * time ordered expectation

values and 3) correlation length s reciprocal of the mass-gap. These are true in general

cvon though they are derived for the simple 2-state sy~tem.

For small A, cqn. (1 .9) for j -= i reduces to

z = c an” + cd’’”

in the limit dr -+ 0, fV6r * r. Z is the partition function for the two sta’,o :~y,+t~ll]. For

T ~ (X!,

~ln Z ‘ free energy ‘- a,, (II())
7

sillrr only thr ground stato contrihlltm to tho sum in the partition fllrw Lion.

Nrxt ronsidf’r tl~r tirrw {)rtlormi prod~ict

(ll”l’lfl:, (r)m:l(l)]lt)

,5



where oz(i) is an operator in the Heisenberg representation. Using eqn. (1.3) We get

= ~.. .x(fle-H’’19n) 031s.)(.s.1 a31s~)(s,le-H’’li).. . . . .

= jj.. jj Srsl (fle-H6rl~r\)(~nl . . . . . . +de-wl
en al

since Isj) are eigenstates of 03. Now it is straightforward to repeat the steps between

eqns. (1.3) and (1 .S) to get the second relation, correlation functions - Euclidean tirr:e

ordered expectation values

(i\ T[03(r)03(l)]ji) = 1

(ile-HT]i) ~ ~xz ‘,sl ‘-T’’””) 0 ‘-T’”’”)
al

= (s,s:) :“ (1.11)

To show the last relaticn, insert a complete set of states of M iri eqn (1.3) rather than

of CT3.Let 10),/1) Le the ground state and the excited state with enegy l?o, El respectively.

Ti~en

(s,s, ) =
(il’1’~oa(r)oa(l)]li)

(ile-HTli)

1
= -E, ~ [ I(W73W !2 ‘-Eor + I(11C311) 12 e-E’r +‘–Gr + e

\(O\0311) 12 (C
–&(r-r)-El, + ~

-E’(’-r)-Eor) 1
In the limit of large ~, the leading terms on the right hand side are

(9.8, ) -+ l(ola~lo) y ‘6 1(010311)12 e--(~i–Eo)r (1.12)

For a theory with a non zero mass gap m z (ill – Eo), the second term controls the

(?xponentiai decay of the correlation functions at large distance, In SM, such an exponential

dmay is characterized by a correlaticwi length ~:

1
–=m:.(E,–E~) .
‘f-

(1.13)

If the first ‘ f?rm in eqn (i .12) is non-zero, then for r --t 00 the correlations do not go to

zf’m. “rhe svstt:rn is said to have long range order, In our simple cxam~;le, t}lc a:, t,vrrrl in

V t(’llii~ to align tht’spins i.r, acts like a magnetic field as s}lown in eqn ( 1.8). Its [Jrw+(’rvr

I)rmks the IIp down symmetry of the states (which rx]sts for V x o, j. ‘1’}1{1s([)l{?:]l[)) / ().

S(J, ill t}li~ silrli}je cxarrli~](~, o:] is arl opcrat(~r that OxljI;rIt]/ i){(iiks the syrnrrl(~t,ry,



In QM, interactions are characterized by non-zero off-diagonal matrix e~ements. If O

is any operator that causes transitions between eigenstates of X, then

(i101i)2 # (i1021i) . (1.14a)

i.e. the system has quantum fluctuations. In SM, an

correlation functions in the canonica! ensemble

(0)’ # (02)

analogous statement is applicable to

(1.146)

i.e. states with different value of 0 contribute to the sum in the partition function. Thus

fluctuations are essential features of both quantum and statistical systems.

Having built up the formal analogy between QM and SM, let me next formulate and

solve the harmonic oscillator problem as a warm-up exercise.

1.2) The Harmonic Oscillator

The essential concepts and necessary background that readers should be familiar with

are given in chapters 3, 8, and 10 of Feynman and Hibbs [8].

The Lagrangian for a SHO in Euclidean time r is

4 = ;(i’ + tu’z2) (1,15)

The quantum amplitude is given by the path integral

K(y, r,z,o) =
/ Oz(r) ~-.l-:~(z,+,t)dt (1.16)

paths

i.e. each path from (z, O) to (y, r) contributes with weight e-s where S is the action. For

the SHO, the kernel can be solved for in a closed form

To set up the problem for numerical analysis, consider

f

+ Y2)coshwr – ~Zy]} . (1.17)

the evolution for in finitmirna] time

(1.18)

In analogy with eqn (1.7), regard K as a 1301tzrnann factor specifying the interaction

between points at two adjacent times. This interpretation of the kernel as a probability

can he med to generate the paths.

For the S110 we are able to write a closed form expression for K. In grncral this is not

p~~ssible. one then uses the alter:lat,e way to go from QM to SM; hy dclil; ~Ii:{ a partitiorl

7



function with the Transfer matrix playing the role of the standard Boltzmann f:.ctor. For

example note that by taking the discrete version of Z given in eqn. (1.15) we reproduce

the exponent in eqn. (1.18). In this discretization, Euclidean time is treated as an extra

dimension. The kinetic energy term in # connects variables in this extra “time” dimension

and the potential energy terms prescribe the spatial couplings. In general, a d-dimensional

QM system is represented by a (d+ I)-dimensional SM system. In the remaining part of

these lectures, this will be the implicit route.

The only restriction to setting up the path integral for numerical simulations is that

K should be interpretable as a probability. This is guaranteed if the action S is real and

positive definite (more specifically bounded from below so that the measure is formaliz-

able). If we can regard K as a probability then we can generate a series of co-ordinates zn

at time (O + rw) for n = 1, N with some starting ZO. This discrete series of points form a

path on a lattice of spacing E. The steps to simulate the patil integral are

(a)

(b)

(c)

(d)

choose some Z. at r = O;

generate Z1 at r = c with probability K given by eqn. (1.18);

generate Zi+ ~ from Zi as in ste~ (b) for N time intervals where (/VC = r);

repeat steps a) to c) infinite number cf times.

The path integral is calculated from the infinite set of all possible paths between

(z, 0) and (y, r) with their respective weight e-s (shown graphically in Fig.1.1) . Note

that changing the oscillator parameters m and w does not change the paths, it changes

the weight associated with a given path. This will remain a key concept as we go from a

single particle system to N particles to QFT,

I’;g. /. 1: A sc’ f i//ustrative paths for the S110.

,x,

.:..-+’”
t.-cl

(2

(;iv~~n the paths, all quantum mechanical expect atif~n val IIcs at some tirnv rlf arc

}{



calculated as simple averages over the distribution of xl:

cm the 2—point correlation functions

(1.19a)

(1.l!?b)

where the average is over the N -+ w paths (path integral) generated by the above

procedure. The first average, eqn (~. 19a), gives the expectation value in the ground state

while the 2-point function, eqn (1.19 b), (n-point functions in general) provide dynamical

information.

If we choose the starting Z. with a distribution ]*0 ]2 i.e. the ground state probability

distribution, then the expectation value in eqn (i.19a) is the ground state ex~ ectation value

at all time slices (no ~ dependence). Otherwise, if we start with a random distribution

of Z. which has a r~on-zero overlap with the ground state then we need to discard some

number of time steps before measuring expectation values. In this latter case we rely on

the exponential damping to remove the higher states. To calculate the expectation values

in some excited state, we need to choose a distribution of Z. that is orthogonal to all the

lower states. Thus, the starting distribution of Z. plays an important role in the evolution

in two respects. 1) To project onto ~ definite eigenstate ~, the distribution of starting zo

has to Le lo(z)/ 2. 2) If the starting state is not an eigenstate then after a certain number

of time steps (which depends on m , u and c) only the iowest state consistent with the

symmetries of starting Z. survives due to the exponential damping.

The above discussion implies that the distribution of Zi generated on any time slice is

/@o]z if the starting distribution of X. is *O. This at first glance sounds fishy - we have so far

been talking about the quantum amplitude and now suddenly there appears a probability.

To understand why recall two facts - the law of composition of kernels (amplitudes)

K(y, z) ==
I

K(y, 2) K(z, z) dz

anu that the kernel is an evolution operator, so in the language of a complctc set of energy

cigenstates ~~

K(?J, Z) = ~e-E” ~,(y) fj; (Z)

i

which show,s that if we evolve an eigenstate ~j then the distribution of z at any intermediate

tirnc has weight #*~. Thus the expectation va)ues we calculate in eqn. ( 1,19) arc t}~e

analogues of J .Cn#”(X)I#(Z)dZ.

(J



In case you are wondering how the amplitude ~ will acquire the expected e-Er behav-

ior since none of the paths terminate (the distribution of z is the same on all time slices),

let me out~ine how this damping is built up in an actual numerical algorithm. To select v

from z using eqn (1.18) one procedure is to generate y with probability

P(y) = exp
[

z—y2
–+(= )] ?

and then accept or reject this y with prcrhability

Y7W2 (Z2 + yz + Zy) ,
l–exp[-~

3“’

(1.20)

(1.21)

To get the correct normalization, i.r. in order to generate y according to eqn (1.18), the

accepted y have to be weighted with

(1.22)

It is this last factor that builds up the c ‘-“r. As an exercise show that you need the weight

factor in eqn (1.22) to get the correct normalization of eqn (1. 18), once y is generated by

eq~s. (1.20) and (1.21).

2) FIELD THEORY ON THE LATTICE

2.1) A#4 Theory in 4-dimensions

In the previous two exarnpltw we saw how to ‘t up the path integral and calculate

the correlation functions for O – d QM systems. Nt’ , I am going to jump to the simplest

field theory in 3+1 Euclidean dimensions – – scalar A~4. The action on the lattice is

s = ~ [ -K #~(z)~@@+p) + \(b(z)l’ + A(p#@)12- 1)2] (2.1)
z *P

which as stated before is the Boltzmann tactor with which to generate configurations. Here

we are going from QM to SM via the Transfer matrix. The standard continuum action is

obtained with the fcdlowing correspondence

Ipc = ad

~, _ (1 -2A)
—

K
A

Ac =
2’

10

(:’ :a)

8 (2.2/)

(2.2C



# is a real valued ~ariable (in general an n – tuplet for an O(N) model) at each site on

the lattice. A path ‘ mfiguration) is defined by specifying the value of 4(z I, Z2, X3, Z4)

at all points on the lattice. The path integral is calculated from the set of all possible

configuraticlns. Correlation functions (probes of physics) are calculated as simple averages

over these configurations with their respective weights as discussed in section 3.1. The

weight of any configuration in the functional integral is e- s.

So conceptually and operationally it is very easy to set up the path integral. The

bottleneck in simulations is that implementation can be (and is for QCD) prohibitively

expensive. Some of the rea~ons are: 1) the need for large lattices, 2) small signal to noise

ratio in observable and 3) slow evaluation of S especial] y when dynamical fermions are

included. I hope these facts shall become clear in the following lectures.

A technical aside; the lattice need not be symmetric i.e. ‘fie lattice spacing in the

space and time direction can be different. To get a field theory we are interested in the

limit $Z A O and d~ -+ O (see section 3.1 for why). Thus one can consider two limiting

processes: 1) The Hamiltonian lim.:; the spacing in the time direction is taken to zero

first keeping the spatial spacing fixed, This gives a discrete Hamiltonian system with

continuous time. The limit 6X -t O is taken next. 2) the Euclidean limit; the spacing in

the spatial and time directions is kept equal i.e. c5z = d~, and the continuum limit is taken

preserving tilis symmetry, Which is the better method to approach the continuum limit

depends on the model and the particular observable being calculated. The physics is the

same. To illustrate this consider a correlation length in a 2 – d model. In the Euclidean

approach ~ is approximately isotropic barring lattice artifacts for small ~. .4s 6T is made

small compared to 6z, the constant ~ circle distorts into an increasingly eccentric ellipse,

Measured in lattice units ~ seems very different in the twG directions, However, converted

to physics! units it is again roughly isotropic (there are some quantum corrections).

In these lect~lr~s I will restrict the discussion to the symmetric Euclidean form~lation

unless otlierwise specified. This IIamiltonian approach is explained in more detail in section

5 of Ref. [4],

2,2) QCD on the Lattice

The lattice is a (3 + 1) dimensional Eu~ Iidean grid of side 1, with ~pacin~ a. ol]r

goal is to define the field variables on the lattice and with them construct an action which

11’ l’~” + ~7P(dP t igAp) t/~ irl thv limit a * 0,red~lces to the familiar continuum form ~ ~1,

The fcrmion fields are functions of space time point,s and are drfinw! i~t rach sitr on t hr

lattice, IIowevor, they are (;rassmann variables for which we have no (Iiroct rf’~)r(~s(’l~tiiti(>r]

that, is arncnablc to nllmerica] simulation. ‘rtlcwllltior~ is to intorgrate thvn] ollt sillco tllv

forrrl ion act, ior,is t)ili near. l]nfertllnat,vly, the rrsllltill~ (’oll~)li!lg !~otww’rl tt~r ~iill~l’ fl(*Kr(’Os

II



of freedom becomes totally non-local This, as will be discussed later, is a bottleneck in

present calculations.

The gauge fields carry 4-vector Lorentz indices and mediate interactions so they are

not associated with the sites. To define them, recall that in the continuum a fermion

moving from site z to y in ;>resence of gauge fields AA(z) (s Aa “A;(z)) picks up a path

ordered phase

@[y) = p J.” ‘gA”(z)dz” *(Z) .

This suggests that gauge fields live on link~ that connect sites on

link is associated a discrete version of the path mdered product

U(z,z + J) = Uy(z) == J-(=+$)

(23)

the lattice. So, with each

(2.4)

where a is the lattice spacing. For concreteness, we shall define ~he field AY to exist at the

midpoint of the link. Also, the path ordering in eqn. (2.3) specifies that

U(Z, Z – 1) = e-’oUA”(z -4) = U+(Z – ~,~) . (2.5)

The dimension of U is speciSed by the representation of color SU(3) to which the fermions

are awigned. Unless otherwise specified we shall uume that it is the fundamental repre-

sentation. Then U is a 3 x 3 unitary matrix with determinant one.

The local gauge freedom acts on the sites. Under a local gauge transformation V (z)

f)(z) + v(~)@(~) (2,6a)

z(z) --+ @)v t(x) (2,66)

up(z) + V(Z) L’A(X)V1(X + ~) (2.6c)

where V(z) is in the same representation as the U i.e. it is a SU(3) matri’:,

I -+-–-
1

?, I

I

A I I



There are two types of gauge invariant objects one can construct on the iatti~e: a

string capped by a fermion and an antifermion (fig. 2.la)

J(z) up(z) U.(X + L) . . . U,(?J -3) @(Y) (2.7)

and the trace of any closed Wilson loop; the simplest example is a plaquette – a 1 x 1 loop

(fig. 2.lb)

Wp” = ; U?Tr (UP(2) Uv(z + ii) UJ(z + 0) fJJ(z)~ (2.8a)

but, in genera!, any closed loop in any representation of color SU(3) is allowed. Here N

is the number of colors and !R is the real part of the trace. The imaginary part an be

used to probe electric and magnetic field strengths since it is proportional to I’PV. As an

exercise convince yourself that there does not exist any other independent gauge invariar t

quantity.

The lattice action for QCD should Le expressed in terms of these twc gauge invariant

quantities. Consider the simplest string in a form chosen with hindsight

v(~)%!%(~)~(~ +2) - fJJ(~ - P) *(Z - L)]

and expand in powers of the lattice spacing a, Keeping only terms to O(aj one gets

.

- ~(z)vP[ (1 + iagAP(z + ~)) V(Z + p) - (1 – iagAk(z - ~)) ti(z -- p) ~.-

Now Taylor expanding about z

-- ~(z)7~[@(z -+ L) -- V(Z -- ~)] + aag7(z)7P[A~(z) -- ~~~PAP(z)][ti(x) -- a~Pti(z)]

t a’agT(z)qP[AP(z) t ~i~PAP(z)][@(z) t ad~tj(x)]

gives to O(a)

2aJ(x)qAi~PtJ(Z) t 2iajJ(z)7p Ap@(~) . 2aiJ(x)-yA[~?ut igAp] II’(z)

‘1’his is t}lestandard (Euclidean) continllum fermion action. For the gat]gc action, 1 will

work r,hrollgh the simple abclian model (in this rasr the {~ arc commutin~ complex nliln -

I)rrs) and leave the non-ahcliarr case as homework (we w’(.Lion 3 of Ref. [If] for dvtails).



Expanding about y s z + ~- gives

n exp [ia2g(t3p Av – duAp)]

z 1+ ia2qFPu – ~F&VFP” + 0(a8) + . . .

Thus

(1- ~,.) = $$F’d””+ terms higher order in a (2.t3b)

since the real part of the linear term is zero. So far the indices p and v are uncontracted.

There are 6 distinct positively oriented plaquettes, p < u, associated with each site. Sum-

ming over ~, v with p # u and taking care of the double counting by an extra factor of ~,

we get

‘1’olow.st order in a, we have again recovered the continuum action.

The simplest latti~ c action for a non-abelian theory is (number of colors IV z :):

which in addition to gauge

1) Tmns!ations by !nttice

2) Rotations by 90°. The

3) Reflcctlons about sites

(2.9)
z

invariance h~s the following space-time symrnctrim:

spacing a,

rotation ~roup reduces to the discrete hypcrcuhic group.

(Zp -+ -rP) and about t!m planes.



All Wilson loops (of size a’x j) have an expansion similar to eqn. (2.8 b), The generic

form, including the next to leading continuum operators, is

Only the numeric coefficients c: (i, j) deperid on the particular loop. Since the higher

dimension operators are accompanied by powers of a, all lattice actions reduce to the same

form in the limit a ~ 0 (which defines the physical theory). There is no unique lattice

action corresponding to a given continuum theory. For a # 0, the physical quantities

calculated with different actions have corrections of 0(a2) with coefficients that depend

on the c(i, ~’). For ferrnions the corrections begin at O(a), To reduce these CCJrreCtiOnS wc

can exploit the freedom to add any number of gauge invariant terms to eqn, (2.9), i.e. add
~ri~itrary shape string9 to the fermion part and Wilson ]OOpS of arhltrary shape, size and

representation to the gauge part [91 . Then by a successively more conlplicated linear

combinations of terms in the action we can cancel all O(a), 0(a2) . . . scal;ng deviations in

nhscrvablcs at firlite ~. ‘rhcreby we have used the arbitrariness of thu \atticc action into an

asset at the cxpcnsc of a more complicated action which is harder to simulate, The hopQ

is thqt significant itnprmwrnent is obtained with m few local terms. S! stcnmtic programs

to calculate such “improved actions” are being invcntigatmi tind for rirtails sf’c refs, I10]

[Ill.

2.4) Fermion Actlonn and Simulations

Illjllllwr of equivalent forms:

(2.13(1]

(2.1:{!))

(:!1:1(’)



SC is the gauge action (which for present we shall take to be the simple Wilson action).

@ is the fermion covariant derivative, and m the quark mass. Either form (2. 13b) or

(2.13c) can be simulated, but each requires the calculation of a non-local quantity. So the

bottleneck in fermion simulations is that a direct evaluation of either det(~ + m) or
k

is prohibiti~ely slow. The simplest appro :imation -called the quenched approximation – is

to set det(~ + m) = 1. The gauge configurations then do not include the effects of vacuum

polarization. The best interpretation of this approximation is that dynamical quarks have

mass m = 00.

The Iatticc formulation of fermions (definition of operator M) is still not satisfactory.

The problem with the naive action in eqn.(2,9) is that in the continuum limit it corresponds

to 16 rather than one flavor. In each of the d-dimensions, the propa~ator has a pole at

pP -=O and n i,e, at each of the 2d corners of the Brillou;n cell, This can be seen by looking

at the inverse of the free field propagator

M(p) = mq t ix -jP sinPP (2.14)

P

in the limit rra~ -+ 0, This proliferation of flaw m in unacceptable. Since the lat~ice action

i~ not unique, we can play around with the ]ermion action for cures (for example add

irrelevant operators). 13efore doing that let me first state some important properties we

wish ideal lattice fcrmions to have:

There s!~ould be a well defined third limit for all g. \

For a single Dirac fcrmion, there ehould be only one lattice fermion, T}]e spin and

flavor dcgmcs of irccdom s}lould huve one to one correripondencc so that continullrn

opcratmrs mn be transcribed strwig}lt. forwar(ily onto t]lo Iritticc.

‘1’}1(1continuum flavor syrnrnctry in the rr~asslcss limit is (JV (1 ) x (JA( I ) x ,S/Jv (n,) x

.5’{J,4(?lj). The (JV (1) is haryon number conservation aud is not broknn. ‘rho l~A(I ) is

I)rokon by instAnton cor~tribution and the flavor Hinglrt tixial c~]rrent in ~llort~alolls, ‘1’hv

,f”U(rt/) x ,S!J(raj) is spontancowriy broken to S’(IV (rIf ) with goldstont! I)om}ns (pioim)

~snociatod with the broken generators. We winh to r~tain t,hcnc chirnl symmrt,rim in

(Ictail.

‘1’hc formion action should I){’I(n”nl i,c. it sho~lld col]plo sitm withitl a stlmll llcight}t)r-



of Dirac fermions. There are two popular formulations –- Wilson and Staggered --–

that provide a partial fix. Each has its advantages and disadvantages. Here I will only

catalogue their main properties.

The fix that Wilson proposed was to add a higher dimension operator which gave

fifteen species, pP # O, a mass proportional to ~~ [13] . These decouple in the continuum

limit except for their contribution to the triangle diagram where they act like a Pauli-

Villars regularization to produce the correct anomaly. The Wilson fermion (W F’) action

where the Euclidean -j matrices are hermitian and satisfy {qP, 7.} -= Jpu. A common

representation is

(2.16)

Ilue to the r term, the free propagator

no long(’r has poles at pP J n. Note that thr ~perator M is not hermitian but satisfies

‘ySil.’f-yh“ Mt. The sarrm relation holds for M ‘“1 also.

Wilson’s fix has a drawbmk; chiral symmetry is explicitly broken. Even dvlinirrg the

({liitrk mwrs is not straightforward. In the limit a ) () (free ferrnion theory), the quark

IIln.ss is given in trrrns of the Iatticc oararnctcrs by

1 Rtcr
rnq

21G

so WI’ know ]l(JW to tIIrI(~ it to zero. A wny from a



is true even at Kc. An example where this is re!evant is the calculation of strong interac-

‘;ion corrections to weak interaction matrix elements. For a expbse to the operator mixing

problem see Refs. [14] [15] . Further, one needs the spontaneously broken SL7A(nf), which

give rise to certain ward identities, to derive the chiral behavior of matrix elements of the

4-fermi operatcrs. In this respect Staggered fermions (discussed below) are better.

The advantage of WF is that spin and flavor degrees of freedom are identified with

continuum Dirac fermions, So it is easy to construct interpolating field operators.

The staggered fermion x (SF) [16] has only color degrees of freedom at each site.

i.e. no spin. The matrix Al is

(2!19)

The SF action has translation invariance under shifts by 2a due to the phase factors

~i,p Z (-l)X”<* ‘“” . (2.20)

Thus a 24 }lypercube is mapped to a point in the continuum limit. The 16 degrees of

freedom in a hypercube become the four spin compm t’nts of four degenerate flavors, on

the lattice, these spin and flavor degrees of freedom }Lre mixed up. Worse, the ffavor

symmetry is broken and we have no a priori way of knowing thu ~.’alue of g at wi!lch it is

{Dynamically restored to a desired accuracy (in Monte Carlo calcuiatiorr? this value of g is

cstirnatd hy requiring that the 15 goldstone modes becoxne degenerate). ‘[’his m,ixing of

spin and ffavor is the major disadvantage of staggered ferrnions.

SF have a well defined chiral limit at m = O for all g. This action also has a remnant

ror~tirluous {/(1) chiral gymrnetry which is sufficient to dcri~~e Ward identities like in thr

tontinuum 117] . This is t}w rnzjor advan:age of staggered ferrnions over Wilson fmrnions,

S(J I)y rvtaining or)ly part of the chiral Syvlmetry, ,SF reduce the (io~Jbling problcrn to fm]r.

“1’11(’op~rator hf is not positive d~’finite (for example in the limit Yr. ~ 0, Lft Af

ill w~n,(2. 1(1)), S(J in numerical frirnulatif; ns we use M+M, I?owcver, sincp

(2.21)

is rvr]l(nfc(l by noting that

(’v)))



The basic building block of fermionic operators is the quark propagator &f-1. For

example consider the 2-point correlation function for a ~+. Using WF and making a Wick

contraction gives

((a7,u), (Eq,d),) = (A4-1@, o)7,A4-’ (07 T)75)

where the average is over background gauge configurations, This correlation function is

shown in Fig. 2.2 and is ea: ‘ to evaluate once M is inverted.

CL+ -- .-—-~ -.—
,---”- -.

.

“w

>
0

1A
4

Fig,2.2: The pion correlation function in terms of quark propagators.

A fast algorlthr. for rr,atrix inversion is crucial to both update and diagnostics. For

a comparison of inversion algorithms for WF see ~191. For S‘, straightforward con-

jugate gradient algorithm seems optimal at present. We desperately need ar algorithm

improvement.

2.ti) Nurnorical Measurcxnent Techniques on the J,attice

“l’here am three v~ay~ to do the path integral:

Generate configurations at random, calculate the corrolati(ln funct,iollq and the wright

(or tht!configuration. Then bulk averages are given by

‘ lN=()~ s,(()) ““ ~ L ‘ (2.’23)
t

with ~~i and ,S, evaluated on each configuration i. This randotn sanlpling ll~otho[l

is inefficient and in a finite samplt? it is Vi\!lJ’ to rrliss ilnportant cotlfigllri~l !JIIS All

tf)grttlcr. It is therefore not, u.d,

!.\N*(),(())
N-



[3]

and

The mixed approach: use the highly fluctua: ing part SY of S in an ir,lportance cam-

pling algorithm and the smooth part S* (whir;’ ;S difficult to evaluate) as part of the

average.

(2.25)

i

This method has not had any success in QFT because of our lack of ability to do the

appropriate factoring, In a different context (1.ezi~ I am getting i.head of myself) for

a complex S, which cccurs in QCD with finite chemical potentitil, updating using the

absolute value of $ and incorporating the phase as part of the observable does not

seem to work because the phase has large fluctuar,ions [21] .

At the cnd of section 2.4, I gave an exaw.ple of the interpolating operator for the pion

the reduction of its 2-point correlation function i~i terms of .M- 1. Similarly, all other

fermion correlation functions are constructed from A,f ‘-1 after Wick contraction. Let me

now give an example of a pure glue operator for the 0++ glueba]l mass:

o(r) = E l’1’’~,j(~],~z,xs,’l”) (2.26)

21,za,zs,icj

where W is any Wilson loop, Recall from eqn. (2.10) that ali W’ilsan loops ha. e an overlap

with F’~VF@V. The sum over sites on a time slice r projects 0 ontc zero-momentumi and

the s1.:u over spatial orientations i < j makes it a scalar (in general a multiple of spin 4).

The higher spin contamination, wc hope, is suppressed by a large mass-gap between th~;sc

states.

[ ha{e already shown that correlation functions correspond to expectation values (Jf

time (~r,!ered prodllcts of operators. l,et me now show how mass-gaps (proton, rho, pi etc.

rtlasses) arc measured. Consider the amplitude

(,~(o(r)()(o)ls) -- (sl... /.9)(,9[0(,)[: ,“ ;).. (’: ~ ;[9(()) 1.9) (2.27)

whrre 0 is the interpolating field operator and [s) z].() t,he cigcnstatcn of the ‘1’ransfrr

matri, t. Then 0(0) can either create or annihilate a quar!ta at tinle () whiic (?(r) (i(ws the
r~tv~>rgemRemembering% that the time evoiution of the state.t -~ c ~;’r, the two dominant

contrii)ljt, ions t{) eqn (2.27) in the iirnit of iarge T are

(()[()(T)O(()) I()) - c ‘;r

(lld(r)o(())\l) -- r! l;(” ‘)

wil(’rl’ /, is t tl($Hizo of”t,tl($jiitti(”(’ ;lll(i ~,’ i!! ttlt’ lI1lMS-MUI). ‘i’~!!’ iill, t,i~’(i Il;ts I)f$rif)t!if t)ollllii;~ry

(ol](iiti{)f)x ;}II(i ttlv (lllt*rgy of !()) is set to wrt), “i’illlx tile’ i)c?ltivi(]r [;!’tlIv ;! ~M}I)I/fr)rrf!l;itit)l~
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function in the large r limit is

(O(r) O(0)) - e-E’ + e-E(L-’)

- cosh E(; – T) (2.28)

So if the data shows a cosh E(+ -- r) behavior for large L and r, then E can he extracted

from the fit.

(a)

(b)

(~)

For a reliable es~imatc or ‘he mass of a given state we need to do the following:

The operator O shou c the state at zero momentum. This is usually accom-

plished by making the t,or translation invariant i.e. 0 = ~z o(z).

Choose an operator that covplc~ to a single state. This is in principle hard if not

impossible. For example lattice operators that couple to a pion also couple to all

radial excitations as well. So t!~e attempt is to maximize the overlap with the lowest

state. This can be done ky mtiking P a variational wavefunction. The method

then provides information about the wave-function of the state once the variational

parameters are tuned.

iMake L and r large so that even if tl-,ere is a contamination in () from higher states,

the corrections are negligible due to the exponential suppression of higher states at

large 7-.

We will discuss how well these points are under control case by case later.

2.6) Finite Temperature QFT

The cx~nncc,tion between time of propagation of a state in Euclidean QF T and tenlper-

(ature in statistical mechanics is very profound. The. quantum eigenstates have a time evo-

lution cxp( EtT), so the relative cont”ibut;.)n of higher energy states is exp(-- (E, - E{l)r)

(the:, arc not damped out for finite ti~rle propagatiorl). Thus each state in the sum over

Stiit(’y has t,h(~ correct lloltzmann like factor to allow an interpretation of r as inverse torn-

])(?riitllr~. In short, a system in a finite box in the “time” direction is at finite tmrnperature.

‘J’his is the basic idea of finite temperature QP’T (see Ref. /22] for a review).

To do QCD calculations at finite tcrnporatllrc, WP Iabei one dirm tion as time an(l t,akc

it iinito ]Illmhcr ,V~of Ia,ticc points along it. The tcrnpcraturo T of the system is tfhen given

t)y ‘1’ ,* whcrr a is fixd by g, ‘1’hc bollrl(iary conditions in the time direction should

1)(’I)vrio(ii’c (’,~nti) for hosons (frrmions). in the spatial direction the boundary conflictions

c;lr] I)r ctlos(~ll I,() 1]0 Whilt CV(’r rr]irrlics in finit,c volume \)(’St. ‘1’() vary t,h(’ tjcrrl[)(’r;~tlllr(’, OIIC



To calculate the zero temperature behavior of the theory, the smallest lattice dimen-

sion N has to be large enough so that e ‘(EI ‘EoIN is negligible. In practice lattices are

finite, so all physical quantities are measured at small but finite tempemture. The T = O

limit is gotten by extrapolation. For a sensible extrapolation there are two prerequisites:

1) There should be no singularities (firute temperature phase transitions) as N is increased

and 2) ther~ exist some functional form to match on to at large N.

3) SCALING, CONTINUUM LIMIT AND EFFECTIVE THJ30R1ES

A fundamental QFT is one for which the limit a -+ O can be taken self-consistently.

In this limit the theory is non-trivial (interacting) if the renormalized couplings gR are

non-zero and fhute. The lattice serves simply as a regulator. To extract physical numbers

from a given lattice theory we need to know 1) the g~.,, at which to take a --+ O and 2)

how this limit is approached so that one can extract sensible numbers working at finite

a. In this lecture I will discuss these points with simple physical observable like hadron

masses a9 examples.

As discussed in section 2.5, the mass m of an excitation of the theory (states) is

measured from the exponential fall-off of the 2-point correlation function. The correlation

length (measured in dimensionless lattice units) is

(= J-
m(a)a.

(3.1)

where m is expressed in GeV, and a in GeV-l. The mass of the physical state is given by

rti = lim m(a)
a-oo

(3.2)

which remains finite as a ~ O for a fundamental theory, The continuum theory is defined

at points where ~ -+ 00. As in statistical mechanics, points at which correlation len~ths

diverge are called critical points. It lS easy to see that at such points the correlation lengths

of all physical excitations -t 00. A finite correlation length ~ is possible only if m(a) --+00

as a + 0. Such states decouple from the theory.

So to have a fundamental QFT that describes nature we require the following:

(i~) ‘1’horc exist at Icast one non-trivial fixed point of the theory. A fixed point is a special

critical point at which the theory becomes scale invariant.

(t)) In case the theory possesses many distinct fixed points, the rclc’vant one is that at)ollt

which !,hc mass-ratios agree with nat~lre.
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(c) Universality: The fixed point governs the physics (mass-ratios) in a certain neigh-

borhood about it. Said another way, all actions (in the infinite dimensional space of

coupling constants) about the fixed point yield the same long distance behavior with

corrections that vanish as powers of a, Thus we can make simulation; away from

~ = m and successively decrease the error in a controlled fashion. For QCD, our

optimistic hope (bufi’ered by some numerical evidence) is that this region extends to

gbare x 1 where the correlation lwth is = 10. SO realistic calculations are feasibie.

In generai, a theory is non-perturbative about its non-trivial fixed poiiits. There is one

notable exception –- asymptotically free field theories (AFFT). They have a non-trivial

ultraviolet stable fixed point at gbare = O. The point gb.rC = O is always a fixed point,

but it is usually a trivial fixed point because the theory reduces to a gaussian model at

this point (g = O + no interactions). What distinguishes an AFFT from a trivial gaussian

model is that for AFFT, gR tends to a nonzero constant as gbar~ - 0, This completes our

first goal which was to identify the relevant fixed point.

The advantage of AFFT is obvious: Near this fixed point perturbation theory is valid.

Thus one can calculate how n-point functions change under a scale change. This evolution

is desc)’ibed by the Callen-Symanzik equations. The simplest of these is for the coupling

constant g
tlg(a) =

a~a --P(9(a)) (3.3)

where ~(g) is called the ~-function. For non-abe;ii-in t~lvn~ies, perturbation theory gives

P(9) = -@o~3 “’ ?lb” + “““ (3.4)

Only tfie first two coefficients, /70 and [)1 are re{lularization scheme independent. They are

(& =
IIN – %t;-. (Isa)

3 * l&r2

01 =
34N2 – 10Nnf – 3nJ(N2 -- 1)/N.—

3 * (16;2)2
(3.56)

where N is the number of colors and nf the number of quark flavors. Thus, the ~–-function

is negative for the anticipated 6 flavors in the standard model. Because of this important

pmpcrty, g ---+O as a –> O and the fixed point at gb.,~ = O is ultr? violvt stable (for details

sce lectures by J. Rosner in this volume).

At g~arc == 0, the correlation lengths diverge. Lattice simulations have to extrapolate

from finite a. This extrapolation is called taking the continuum limit. Ily c.onsistcncy,

we t,ake the limit a ~ o holding some physical quantity constant (the proton mass for-

ox; irr]ple). J,(’t ml, ma be t}lc dimensionless mass measured on the lattice. ‘1’hcn

dm [, da
—.. — .- ?71— .

dg (ig
(3,6)
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Holding m fixed prescribes how a varies as g ~ I So when one measures rn~ at a number

of values of g, it changes bee,, ilse a (an arbitrar> nit) changes. Such measurements give a

non-perturbative answer for the relation between a and g. But how do we know it is right

and how do we extract physical masses?

Integ.mting the 2–loop ~–function, eqn (3.3), tells us

(measured in lattice units) should change with g for small g

a.
–~

mu = Cf(g) = c ( 4
P092

ezp[ –

how any dimen.simdess mass

+2&)g2
(3.7)

Eqn. (3.7) holds for all physical observablss with dimensions of mass. Only the constant

c is differe So once the mass measured on the lattice starts to change according to

eqn. (3.7), cqn. (3 3) and (3.6) agree up to some predefine error criterion, then that

interval [g~~y, 0] is called the asymptotic scaling region. The constants ci are extracted

from a best fit to rnL/~(g).

Having gotten the ci, we still do not have a physical mass since ~(g) is arbitrary at

least up to a multiplicative factor. However, their ratios are well defined and specify the

spectrum of the theory. If these numbers agree with experimental values then we have the

right theory.

Another approach is to define an integration constant A z ~ with ~(g) given by

eqn (3.7). Then m; = ciA in the asymptotic scaling region and all dependence on gbar~

and the cuf.of? a is hidden in A. This integration constant provides a scale and corresponds

to defining gR, the one unknown parameter of the theory. QCD, ignoring quark masses,

has only one dynamical] y generated scale. To fix A in physical units (A4eV), one relates

it to a continuum definition like .fjtiy by one loop perturbation theory and then uses the

experimental value for Am. Of course by reversing the argument one could predict A-m

provided all calculations are done at small enough g so that perturbation theory is valid.

The replacement of the coupling constant by a momentum scale A is given a fancy

name -–– dimensional transmutation. The idea is neat; we started with a scale invariant

theory (ignoring quark masses) and find that in order to get sensible results all quantities

have to be defined with respect to some momentum cutoff. One can chang? the cutoff and

physical quantities like masses remain unc}langed if we suitable adjust the running coupling

constant (for n–point functions we have to include anomalous dimension factors). This

renormalization group invariance is embodied in eqn. (3,7).

f<’org H 1, we have no a priori mason t,o believe that eqn. (3,7) wo,~s. tlowevcr, wt’

rail still write

m,a C,f,(g) (3.x)

where jt(!g) are Ilrlknowr] ~~t~rl-~)crtl;r})ative fllnctions which redllce to cqn (3.7) ill tllr Iirr]it,

24



g a O. The expected behavior of mass ratios in QCD is

?’7Zi
— = ;(1 + O(u’hl a))
Wlj

(3.9)

and it ir believed that correction at g < 1 to the ratios (coefficient of the O (a’ in a) term)

are small compared to those for individual masses. The interval [ga, O] over which mass

rati M are constant is called the scaling region. We do know that g. > go~v. The present

numerical data does not provide an unequivocal answer for g~. So achieving constant mass

ratios remains the goal of lattice calculations.

Let me restate these ideas from an operational stand-point. A lattice simulation is

done on a grid of size L4 with two bare parameters g and rnqa (assuming flavor S[1(2)

is unbroken so that mq = mu = rnd). We then measure pion and rho masses, which in

lattice units are pure numbers i.e. mi(a)a = ci. By fiat we declare mP = 77o A4eV. Then

1 mP 770
= =-. — MeV

a CP CP

(3.10)

with, CP evaluated at that mqa for which ~ = ~ = ~. So we have used two known

masses to fix the two bare parameters (remember g and a are related by eqn. (3.7)). Now,

the test that QCD is the correct theory is that all other masses calculated – proton, delta

baryon, g~ueballs - agree I 1th nature.

In the above procedure the value for g was not specified. So you could ask whether

there exists another fixed point (different from g~n~e = O) at which all mass ratios take on

physical values. If QCD is the fundamental underlying theory, then the answer is no. All

we want to know is how small g has to be for reliable results. For g < g,, as g + O, all mass

ratios become constant wit}l corr~-”.~ic”.s that vanish exponentially with g. Moreover the

variation of any mass measurd in lattice units begins to show a g dependence prescribed

by the 2-loop result eqn. (7.7) for g < gm,~. This as mentioned earlier is a consequence

of universality about the UV fixed point. So a good test of numerical calculations is that

scaling behavior is demonstrated over a scale change of two or more.

To summarize, the lattice t} eory is trivial at a = g = O and all { ~ 00; physics is

(Ixtracted from the way physical quatities change as a -+ 0. At finite a all correlation

lengths aro finite. “1’he infinity arises because we start to measure a finite distance with

an increasingly fine scale. Introduction of a uilit, A, gets ri(l of the spurious singularity.

fiowever, the increasingly fine scale is necessary to remove errors due to the discreto Iattico

forrriulation, As y -+ O, the different correlation lengths (corrmponding to dilrrrent physiral
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In statistical mechanics the intramolecular separation (call it a again) is the natural

unit for lattice spacing while temperature and magnetic field are physical measurable

quantities. These couplings of the “effective” theory are in . :inc. iple derivable from a

fundamental microscopic theory, but for understailding macroscopic phenomenon we are

not interested in that connection, Starting with an effective Hamiltonian defined at scale

a, a lattice simulation describes physics for all r > a. By varying the couplings one can

investigate the behavior at different temperature, magnetic field etc.

In SM, models representing nature have to reproduce phenomenon at all physical dis-

tance scales and over a range of parameters (like temperature ete). To do this faithfully, we

need an infinitely complicated effective theory. Fortunately, simp!e models can describe the

behavior in limited domains. Of particular interest are critical poil:ts at which substances

undergo a drastic change in behavior. They show collective behavior with fluctuations

at all length scales. The 2-point correlation function no longer fall off exponentially but

with a power-law. This is characterized by ~ - cm. One would have thought that such

regions are complicated to analyze. The simplicity arises because the correlation functions

(n-i}oint Green’s functions) scale, i.e. are dominated by a single large correlation length.

The many-variable functions become simple functions of a few reduced variables and scale

changes are expressible by simple equations (the Callen-S ymanzik equations). These equa-

tions simplify further about the fixed point. The solutions to these idealized equations are

exc~llent. guides to what one really observes in nature for distance scales much larger than

the granularity. This is the scaling hypotheses [24] ,

One talks of critical points in both QFT and SM, but there is a subtle difference that

should be noted. In QFT, critical points are simply points at which the lattice scaffolding

can be discarded. So, tuning (G + 0) is necessary to get the continuum theory.

There is often confusion about critical points and fixed points. Fixed points are

special critical points at which the theory becomes exactly scale invariant. At critical

point there are corrections that go under the name of scaling violations. A generic form

of the correction is ~ where ~(r) is a slowly varying function of r aa t --+00. ‘rhlls fm

In.rge distance behavior i.e. r s { as { -+ 00, the distinction between critical i~rl(i fixed

point fades. It is worth remembering that phynical systcins exhibit critic~l behavior. Fixwl

points are m:~,thematical constructs,

Now lets turn to effective/phcnomenological theories in QFT. ‘rhoydiffer from flln(i;l-

mcnta] theories in that they are valid oiiiy up to some short diutance cut-of i’. I:or vm’rgios

Illllcil srnailvr than the cllt. off, ttie prcmnce of the cut-off’ is a nli(i cilrioflity all(i cfrvctivr

t,llrories illp an accll rate (iww.riptiotl of naLurc. ‘1’hry Jmvc an acivanlfilgc of f(w I]sillg altrll,

tif)n of) tht~ rri(’vnnt (icgrcm of frmxlofn at that sc~~ir, of)ly for ont~rgif’x cl(nw to ttlt’ (III, 01!,

tho n~wi for an {In(ieriying fllll(iamcntni theory (or next lvvoi of t’lfvrtivo ttlw)ry) Iwcollws

t;lallifwt. Nirectivc !Ihcwriw can be (icrivwi from ii rl)i{rowf)l]ic thtwry I)y inl,ogr;~till~ 0111



all degrees of freedom with momentum larger than a predefine cutoff. More often they

arise de facto; a theory is invented that describes phenomenon at a given scale and later

it is shown to be valid only up to some finite cutoff. An example is the 4-fermi theory of

weak interactions. In the next section I describe anothe~ possible relevant example of an

effective theory - – e!ectroweak interactions in the standard model.

3.1) The SU(2) x U(l)Y + Higgs model

The bowmic sector of electroweak interactions is described by the spontaneously bro-

ken gauge group SU(2) x U(l) y coupled to a doublet of higgs in the fundamental repre-

sentation of SU(2). Sc far no non-trivial, tied point is known for either the higgs model or

the U(1) theory. It is not known if coupling to SU(2) and the occurrence L: spontaneous

symmetry breaking gives rise to a non-trivial fixed point. While the presence/absence of

a non-trivial fixed point is an open problem, it is fairly certain that if such a fixed point

exists then it would be inherently non-perturbative so lattice calculations are our best bet

for settling the iss~e.

In the absence of a non-trivial fixed point the elcctroweak theory is a low energy

effective the~~y. Let me first assume that this is the case. We would then like to know

under what circumstances is the IIiggs particle rnasa predictable or how to derive an upper

bound on it. Le~ me briefly outline how the community is going about addressing this

question. For details see the reviews by Shrock [25! and Jcmak, [26] ,

A standard form for coupling the gauge interactions to lligg~ is to modify the dcrivwtivr

term in cqn. (2. I ). The full action is ,S1{+ S1 t S2 with

(3,1 It))

(3.IIC)



I~i the limit g2 = gl = O, the Higgs model has an O(4) global symmetry with a line of

critical points given by XC(A) 123]. For small J one gets a decent approximation from eqn.

(2.2b) i.e. KC(A) S.Z ~. There is mounting evidence that the continuum Iimlt of this

tlieory taken anywhere along this line is trivial t,e, the model reduces to a gaussian one

For K > KC, the global 0(4) is spontaneously broken and the spectrum consists of three

goldstone bosons and a massive Higgs. On the lattice, one can measure two quantities ma

and (rj) to fix the bare couplings and the wavefunction renormalization Z@ to relate them

to the renormalized quantities. For K -~ KC, the predictions for the O(fV) gaussian model

are [271

where K, .= lx

2ma > Icr(log x,) “-:-H (3.13U)

(,b~) 0( Kr(loglcr)+ (:].l:]h)

m:

(42)
a (Ioglcr) ““1 (3.13C)

L.1. Eqn, (3.13c) tells us that the Higgs mass goes to zero at all points

along the critical line, On the other hand, when m.a s 1, u cut-off theory ceases to make

sense and e~timates of the IIiggs mass become unreliable. In between these two limit cases

one has a sensible effective theory with AR # O. The renormalized coupling and field

strength can be defined to be

(3,14(I)

(42) - Zddi) (3.14h)

(:{.15(1)

(:1. i M)

(:{,1!7(”)



Two different numerical approaches have been used to measure ma, (@2) and Z@ on

the lattice. For a description and details see Refs, [29] [30] and [31] [32] For a fixed cutoff

(i.e. a fixed value of rn.a) tile larges~ upper bolmd on the Higgs mass occurs for A -* cm.

The present estimate from these calculations is ~ s 10 evallJatcd at m.a = 0.2. In the

last year, Lkher and Weisz have developed analytic methods (combining renornlalization

group equations with high temp~rature series expansion) to analyse the A@4 model and

calculate the bound on the Higgs mass [33] , These techniques are well worth learning and

I encourage you to work through these papers.

The next step is to include the SU(2) gauge interactions in lattice simulations. The

qualitative change that occurj is that, in the l~iggs phase the goldstone bosons of the 0(4)

theory become the longitudi’lal excitations of the gauge bosons and this combination gives

the three massive W-bosor,s. Other than that, for small g2, we assume that the gauge

intertictiorts can be nandlcd perturbatively and that the physics is controlled by the 0(4)

fixed point of the I?iggs niodel. Then for fixed A and g2, we can calculate ml{ and mw on

the lattice as a function of K in the broken phase near KC. To test the assumption of the

relevance of the 0(4) fixed point, one cornparm the scaling behavior of the rrli~~s~~ against

cqn. (3, 13) and again’, t eqn. (3,15a), Next vary gz and repeat the calculation. Then for

a fixed cut-off (i.e. Nwa = constant), the ratio ~ is determined as a function of gz. If

the ratio does not change dramatically as a function of g2 and both m}{ ari(l mw arc small

comparwl to tllf cu toff, then wc get a rvliablc rstirnatc of the ratio. ‘[’o make o prediction

w(’ tlavc to tune gl such tl]ut gR = ().4 iiS given by (:qn. (3. 15c). Agilin, tl]e upper Ix)III](I

cornm from taking A * cm for a fixed cut-off and then dccrca. sing the c~]t-of~ whilv stmying

in the scnling rrgion. If this is the corrmt scenmrio, then in ;~(l(iiti(;~l to }~Imun{l 011 tho

Iiiggs llulss WC!jliiVP Ufl ~!itillli~t(! of ttlc scale (i.e. the Cllt,-off) ~~twhirl] 11{*W physics sots ill,

III tilt’ al)i)ve (Discussion I hnve mwdo the implicit assumption t}lat aflding [~( I )Y ~LII(l

fvrrliif)tls to .~l~(2) II ifjfg.q fmdvl do not chwn~c tho lmun(l vt$ry IIIuch, ‘1’IIv rfrortjs of tho

(/( I ) y cnn I)r cstinmt,d hy incorporating it in l~ttico sitl~~llntion~ an({ rhw.king t!; ‘ truo

IVVI’Irclntit)n~ involviflg t,ho wcnk I]lixing nnglc. ‘1’hc fvrfnioll wwtor is nti (JI)cn I)rot)lvtll Nt

~)r[wvnt ~inc(* we (lo not know ‘“ M) ~)llt chirnl fcrmion~ 011 t,tlr I;ltt, icv, I“or SOIIIOrolvllt,

work wit,ll r]on-chir~i forrnions nr~ thv roviow I)y Shr(wk,

If’wv fit](l m non-trivial fixml t)oil~t in tho I)monic wwtor of tho I I I }Iw)ry I,t]cl) wo Iirxt

IIVWI 10 sh(~w that it ifl rolt’v}lnt to th(’ stt~n{lurd IIl~J(iPl t~y fl]vnsllrifl~ ?Tl, Nn(! (f~) NfIfl X+

(,,r ,*f~lliv/\14*lit,lyrnw nl){i ?,*II) {,,, t,llo Imt,tiro. [f tt]m(’ mgrw with ll~~tilrvt 1,111*1111,(’i)r(’viollx

(liw’llssi[~il rlINIIgVNI)IIly ill tho followill~” wily: tll~ Vl\lll@ of l~ltticr {“t,.ll~litlKNiit, wlli{lt to

lll;tk~’ ct)I~INct with t III’ c~)litinl]llltl arr (ivtvrnlit}o(l I,r, tlI~* IIIMS riitit~ is (NltlIlatwl i~:~A

litllltillK Ijrt){tvts i~y t,llllil]K tt)d {~)ll~)lillKfl t,fj l.ll~*ir crit, ital ~)oitll \’;~lIlt*!{,‘I’}l{’1(’ r! ’llliiill~ 01II%

tItIiI ltIIIKt II x(;II(* ill I II(I t)rl~l~lvl!l, .Xlty (1/)), /{11({ttll’ ][i KK?4 rll~is?l l’lill 11(’ l~rt’lli~ Iv{!



known small values of Gr and cc,~ if the model has large renormalization efFects. The

relation between the bare and rcnormalized quantities has to be determined by m~asuring

physical observable; for example the potential between two external charges can be used

to define g~ in terms of g and eqn. (3.14a) for AR. So far there is no evidcrrce for large

renorrnalizations in the broken phase of either the SU(2) Iliggs model or the U(1) Higg.9

model. Thus the present consensus seems to be that a warch for a non-trivial fixed point

is a high pay off but a very high risk undertaking. IIowever, since the presence/absence of

non-trivial fixed points can only be settled by non-pert urbative methods, it is necessary

to develop the tools,

4) STATUS’ OF LAT’I’ICE CALCIJLATIONS

4.1) Necessary Ingrodicnts For A Good Calculation



in the limit g + 0, A reasonable test that the lattice results mimic the continuum

is constancy of mass ratios over a range of coupling for which the scale changes by

a factor of 2. Finding improved actions, as discussed in section 2.3, to redlice these

corrections for some fixed correlation length would help greatly,

A rude ~stirnate of the kind of power we need with present algorithms to perform the

next generation quenched calculations is 104 gigallop hours. With dedicated computers

being built this goal is within sight. But the need for a gorithrn development is obvious.

Status of I’Jurnerical Results

1 wi!l just summarize the key issues and the status of present calculations. For details,

see the Ioctures by M. Fukugita and R. Gupta in [6] and the reviews [36] [37] . A word on

notation; i,he 5’U(3) gauge coupling is specified in terms of either g or ~ G ~.

4.2) The Hadron Spcctrurn:

:{ I



i.e. (mP < 2rnT). The re~ti!ting spectrum is essentially the same as the quenched case

[451 [37]. [461 [47] [48] This result is not ur,expected for heavy quark masses. In fact it is

consistent with data for mesons and baryorrs with all strange quarks.

An additional problem in present lattice calculations is that the baryon mass is large

in lattice units i.e. ma a 1. Thus there is no reason to expect that the lattice granularity

does not significantly effect its measurements. This possible source of error will also he

exposed when the quark mass is decreased.

To sort out the nucleon to meson mass ratio discrepancy and verify things like the

nucleon to Delta mass splitting one needs to follow a three step progranl: 1) For fixed

co~ipiing (.qay ~ -: 6.()) make a finite volume study (on lattice sizes 16,24,32 , . .) varying

rn ,J until one reaches close to the physical quark mass. The purpose here is to eliminate

finite size effects and the extrapolation from large mq. 2) To decrease g unt, il maw ratios

at physicid quark masses become constant, This eliminates possible scaling violations. 3)

Ilaving gained control over statistical and systematic errors repeat the calculation with

(lyrli~nli(’al ferrnions.

‘1’h(~positive aspects of quenched calculations are: 1) the spectrum with Wilson and

staggered formions show agrccmcnt, starting at /1 x 6,2 138], 2) Similarly, starting at this

co[lpling the staggered flavor symmetry is dynamically restored to .$( J(nJ) (tip to 5%) [38]

~3!~].3) In all calculations, the pion shows the vxpccted c}~iral behavior (m: cx mv) up to

Iln(’xpcctcdly large rnv. It is not cl(’ar if t}lis is good or bad considering the ~ prot)lrrrl,

Art’ we being misled by an apparent Iincar behavior while the true chiral Iwllavior will

sot-ill for rl]llctl Srrlilll(’r m,, or aro thp extrapolations for the t)aryons froirl hviivy rrl,, ;lt

filtllt? ‘1’hc flvXt gcnvrati(~ll calcllltitiorls will addrt?rw those ql]mt,ions,



fermi. The small r beh,:vior does not show good agreem~nt and it is speculated that the

quenched approximation is at fault. Present calculations with ferinions are not accurate

enough to shed any new light on this problem. 2) T}lc spin-orbit term VI in the spin-

dependent potential is long range [49] .

For hard numbers, the string te~lsion is the best measured quantity. The world data

(with rny biased selection) is shown in Table 4.1 [50] 151] [52] [53] [54] [55] [56] , The

results suffer from two syster.latic effects; 1) the difference between Wilson st:ing tension

and ‘t Hooft string tension and 2) it has not been reliably demonstrated that the estimate

of u is independent of loop size (or the separatio, in the 2-point correlation functions).

Thus there may still be large errors in t}le extraction of u - – x 50% even at ~ x 6.0.

1. (I2Z. --:w-‘ ‘t ‘ -~~”---;~o.wo(i~m

———
5.7 ().1{)5(10) 53’ ().135~i
5,8 011 1(3) 50 o.09~i)[51 ]

9
.——.——

5.. ().068~1~ ’56] (),om~~~qss]

6.0 (),061(2) [50] - (),046 [54] 0.050(2) 56] o,042(:~-]52]
6, I

——. — ———
——

6.2 (),()36* p) ().mxp) [56] “ “–...— -—. .-.— .
6.3 omT3-p~F-.—— —-——.——— —.— —-—.— ..—



the pure gauge theory (preliminary calculations with dynamical tcrrnions have used L very

large (iuark mass). Therefore we have no new informaticz on mixing between glue states

and states ‘~ith the same quantum numbers but with ql:arks in th(?~L.

The two main bottlenecks in glucba]l calculations halve been 1) a rapid loss of signal

with increasing ~ at a given physical separation ~ (see qn.(2.28]). Worse tlis distanco

is not large enough to allow a clean single exponential ‘it to ~xtiii..t the lr~ass of lowest

state. 2) large finite volume effects. To solve the first prob!enl we need to invent better

interpolating field operators. Because of these problems, the only pure glue state for which

we have a modestly reliable e’,tirnate is the () ‘+. Hy Murphy’s law, the experimental

information on this state is poor.

I’he world data from large lattices and for ~ s 6.0 !.s show~, in Table 4,2 along with

the string tension result from the same data. The premnt estimate for the ratio ~ ;s

:;.1 3.4(1300 1400Me V)[59] [60] [61/ [55] (56]. SrI far this ratio has showl~ sta~ility

under an increase of the lattice volume (except for set 15 in ‘rab]e 4.2). I feel that w[’ still

rlvwi more carefut checks at a larg~sr lattice volume and !,trger /7.

l’or the initiutcd on/y: I would like to contrast the r+:.,ults of Teper et. al. [56] obtained

with improved intrrpolatirlg field operators but without ‘,};e source method to enhance the

Sigrliil i~t large ~ with those from t}le source method a+. ~ . 5,!I (i.e. set, ]9 versus 11 and

14 in Table 4.2). The result for aaa is (),()68(3) versuc (; 062(2) and for the ()+ + mass it

is ().tll (3) versus ().75(6). The est. irnates by ‘rrper et. al. are systematically higher. Two

possit)lt’ rousons arr: 1) the results of ‘roper et. al. are not asymptotic i.e. tney havo n~)t

Ij{’cll frl(’asllr{tl at lilrgC vnollgl. separation or 2) there is 8i :Jias in the source irwtho(l; the

rlfmt, s of tile lack of posit ivity of the transfer matrix have r:!-t b[,.sn f~~lly rmnow:d at prosorlt

s(~[)iiri~tiorl~ t,r. T is sr[lall in tile source Irl(!t}lo({ too,” M(*-P ~v~rk i,, r~omimi to (im-i(ic Wt)iit

is tlt]v corrvct ox~)lllnntior] an(i to got l}ettcr retruljs.

II;stirlmtfos of lb{’ 2 + 1 state arc I(WS rolitil)ic. ‘1’k,e lutmt wi>r({ IS that. rri2 * t is x

I!(i ?ll,), t ,56], ‘1’tlo rmlllts of Tvprr ot. nl. i~rc in agrcof~wnt with Koli(’r-ViLIl Iliiill [~;2]

,lllill.J’ti C c;ilclllittiorls for srnull volllrllos I)llt ~llggwrt that, colltilllllirri Iwtl+tvior olily stIt,s

in At. frlllrh Iargor x~mtikl volumosc ‘i’lIf*conclll~ion is IJil:lt ii !i nali vf}llllrw Itlr 2 ‘ +

fII,Ix3 is illlllo!it fio~rrlorato with ()+ i , I)ilt c}larlgm ra~)ifily })otwcrll 1(1 . 1, . 1[; ;Lt,/) ‘:

fro. ‘1’lIPstring trnsion nn(i ()+ ‘ rrlnsw (io riot slIow sirilil:. r strorlg Iilltt(’ ~f:ll]rrlf’ f*lrf’ct,s,

‘1’11(’rcforr rrms~ ratios ;~rr a!i’vctwi;lrl(i (’{)lls(’{111(’f)t.lyf*Xtj,’;\’ )iJlillji{)l!fl c~illrlf)ll IJ(* rrlil{i(’ t’!orr)

1:1.111 vt~lllrllt’s, Wr ll(vvi lrlf)rr (i)rr;~t){)r;l!,ivt’ ~lat~ to c[)r]llr:~] Ijllis (’x{Iling rmlllt.

‘1’tl~’(orir ({v for(v ;ir],ilyfic (i~l(lll,~tiotl~ of K[)ll{.r NII(l l’f~r~ Ilaiil ~(itillIAvI* [)rt)vitllvl ;III

,1~ t IIrtIltI ( ,Ilil)rliliotl of NftIiill vf~llllrlc’ l,~l,ti(”r (’alrlllnliorls nll{l n,l irl’,ifillt f.f) ttlv l~tly.sit,11

;III ftlrr Ill lli,~l, r?’gi{}ll \J’r IIlll)r t}lilt tjlvw (ml(lljat,lorl~ (ilr) I)fi vXtPll Ilv Il I, f*yoll(l t 1]{>r~t~iorl

tvl(~rf’ tir}lt(~ HIIII (*III(Is ;irf’ I,irge, At l)rf~~ellt, Wp ,yl,lll ]~;~~p i,~~ J(*Iv OI! rll:lrl(’ri(;ll slrflllllltlt)rlt;

I,, r III(* t orltilllltllrl l)vtl,~v ior S{) III{* ff)(llx of fllrrf$r)f r($s~l;!rf]l Is to ,jrvclo~~ lll)f{i\tIl LiI tl(lrrl~$:,
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#

1
2
3
4
5

6
7
8

9

10

11

12

13

14

15

16

KF Lattice u(L)L m mG(L) rno

9.2 63 x 21 0.76(5) 0.395(25) 0.91(10) 2.3(3)
9,9 63 X 21 0.32(1) 0.287(12) 0.79(11) 2.8(4)
9.9 93 x 21 0.63(2) 0.288(10) 0.89(8) 3.1(3)
10.5 9J x 21 0.38(1) ().235(14) 0.67(6) 3.0(3)
10.5 123 x 21 0.57(3) 0.234(28) 0.64(7) 2.8(4)
5.5 63 X 12 1.86(6) 0,58(1) 1.07(3) 1,84(6)
5.7 63 X 16 0.63(2) 0.37(1) 0.66(4) 1.8(1)
5.7 83 X 16 0.94(3) 0.37(1) 0.86(4) 2.3(1)

-K9 83 x20 0.33(:) 0.24{1) 0.73(14) 3,0(6)

5.9 10J x 20 0.52(1) 0,25(1) 0.68(8) 2.7(4)
5.9 123 x 20 0.65(3) 0.25(1) 0.74(7) 3.0(3)
6.0 10J x 20 0.41(3) 0.21(1) -

5.9 10J X 32 0.48(3) 0,24(3) 0.65(3) 2.7(2)
5.9 123 x 32 0.66(1) 0,25(1) 0.76(4) 3.05(2)
5,9 163 x32 0.86(3) ().24(2) 0.82(5) 3.4(3)
6.0 133 X 18 - I 0.65(8) -

L

17 6.05 133X 18 - 0.66(7) .

18 6.1 133 i. 18 - ().64(10) -

19 5 >( 124 (),26(1) 0.81(3) 3.1(2)

20 6.0 164 0.22(1) 0.74(4) 3.3(2)
21 6,2– 204 0.16(2) ().47(.5) 2.9(4)—

:).7



that have fast decorrelation times [63] , to design better operators as probes of glueballs,

to construct sources that enhance the signal at large ~ and use improved actions to reduce

scaling violations.

4.5) The [ ;’tinctitm f~i” Pure Gauge SU(3).

The fl-functim in QCD measures the rate of change of scale with a change in the

coupling constant g. We know the behavior of the @-function at small g from perturbation

theory (eqn. (3.4)). At g where lattice calculations are done the 2-lattice MCRG method

[2] is a reliable way to measure the d,screte non-perturbative ~-function of QCD [64] . A

test for asymptotic scaling at a given value of ~ is to compare the MCRG result for A~

to the 2-loop perturbative result.

Orr the lattice we measure the discrete ~-function; A@ for a given scale change 6 =

al /a2. So far MCRG calculations have used two different scale factors; 1) b = <i and 2)

b = 2, The present limitation oi’ results with this method is that the starting lattices are

not large enough to extract a converged value of A~; i.e show that it is constant over a

few blocking levels. A Iternately, one can also extract A~ from physical observable like

masses, string tension or the reconfinement transition temperature. The main error in

this method is that we have no real estimate of the errors in physical observable i.e. have

they been obtailied from measurements at large separation? For example, one },dS yet

to show that the string tension is independent of the loop size used in the measurement.

The best estimate of the confinement scale is from the measurement of fhe pure gauge

deconfinernent transition temperature [65] . IJnfortunately, in this case the value of the

coupling g is not selected to get a fixed rcale change. I have tried to reduce this second

error by only using pairs of data points for which the scale change is close to b = fi in

fig. 4.1. You should try to estimate what is the pobsible uncertainty in the globi~l data for

Af! due to these systematic errors. Note that In fiq. 4.1, I have resealed all Afl t(, ! &

for comparison.

All calculations agree on the large dip near ~ 6, ‘rhere is some discrepancy on the

;~pproach to the ~-loop perturb ative va]uc. The b = 2 calculation by the Edinburgh group

:66] shows a significant deviation from the pcrturhative behavior lip to O 7.2. It would

1)(*val~labie to reduce the errors at the last two points, @ - 7,() and 7.2. ‘1’hc b m

(i~l(.lll;~tior~ also gives a v ~lue smatter than the 2-loop result up to (j 7.() [fj7] , fl(’twcvrl

/~ [;.2 and 7 there aro s 10% deviatiorls from the 2-l(M~p value I)llt A/j is not M sm;~ll as

the ~dinl)~lrgh rwult. ‘rhe estimates at I) 7.25 and 7+5 arc consistent with asymptotic

scalinfl. ‘1’lIc statistics at those twr) p[)ints are 50,000” sweeps (45000 rrl(’asllr~rrlf’rlt,s), s{) tllr

t’sl illl;lt(~ of sl, iLt, i!+t,ic;il f~rr{)rs is rvii:ll)l~. ‘]’llc systcrrlatir errors art’ cstirr}atwi ;lt, % I ()(’fi f)vf’r

t}l[ crll,irc riillg~ ()( /) il]lv~t igatwi. 1 [($(*1 that thv di~~cr(*ncr ill roslllts ;~t large /1 frorrl IIsirlg

t,tl($ two r{’rlorlrl;lli~ilt,iorl” grf)lll) l,rill)sforl]]i ltioll~” is sigtlific,ltl., !io WC ll($(’fl to (’Xillllill(’ t 11(’

!iVst. (’llliit, i(’?+ ~jf t,hv t,W() trill lslorrllilt, ioll~.”

:{(;
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The A/? result is important because if we want to solve QCD with better than 10%

uncertainty, then we need a non-perturbative scaling ansatz since perturbative scaling has

at least 10% corrections up to /3 = 7.0. The prime source of unknown systematic errors

in the MCRG calculation is the number of blocking steps, Because of these, the present

calculations cannot distinguish between a slow approach to asymptotic scaling between

P = 6.2 and O = 7.0 after the pronounced dip at @ N 6.0 and the possibility of additional

structure due to phase transitions in the extended coupling lattice theory. FOX the W

transformation, the next obvious refinement step is to redo the calculations with a larger

lattice; for example, a 9W lattice allows one more blocking step.

4.6) Status of the Finite Temperature Transition

What happens to Quantum Chromodynamics (QCD) as the temperatu,w is increased?

Is there a phase transition to a quark-gluon plasma, and if so what is its order? Over the

last couple of years, the answers to these questions for the realistic case of very light u and

d quarks and an intermediate mass s quark are beginiling to emerge.

Let me first review the expectations for the phase diagram of a theory simpler than

QCD: SU(3) gauge theory with nf degenerate flavors ~i quarks. The parameters are the

quark mass m~ and the temperature 7’. For m~ = 00 the theory reduces to pure gauge

SU(3). There is considerable numerical evidence [68] [651 that this theory has a first order

reconfinement transition. The Polyakov line (L) is the order parameter for this transition.

It vanishes below the transition temperature TC, but has a non-zero va!ue above. The global

Z(3) symmetry of the pure gauge theory is spontaneously broken above 7’C. Quarks wi~h

finite mass act as external fields coupled to (L), and their inclusion weakens the transition.

The Z(3) symmetry is explicitly broken, w (L) is never zero, but it is still discontinuous

at the transitiori, and thus remains an indicator that the transition is associated with

reconfinement. As mq decreases it is possible that the transit,lon weakens and actually

vanishes, allowing an analytic connection between confined and dcconfined phases. Also

possible is that the transit~on j~ins continuously onto the chiral transition, which I discuss

ncxto

For m~ = O the theory pomesse “ I exact SU(n~) x S[l(nf) chirai symmetry. For hi~h

T there is an additional approximate axial U(l) symmc-try (broken by instanton crmtribu-

t,iol~s). [t is believed that these symmetries are sporrtarleously broken at low temperatures,

t)llt iir(? restored above a critical terrlpcrature. The order pararrleter for this ctiral transi-

tir][l is (Ft), which is non-zero only lMIOWT,,. An ~ rxpansion suggests that tho transition

is lirst or(l(’r for uf . 3, l)ut may I)c Iirst or second ordor for nf 2 [69] . K’or nf .{

1tlis (-rIrI{ ion is sll~)i)(jrtc(i I)y a calcul<ktior~ Ilsirlg an iipi)roxirrlatv rcrlf)rrrlaliziltrit)rl grol]~)

t’({llat.it)rl 01 At q IW (strx,ng collpling expansions), in a lli,rrliitonii~rl trciitlnent, ,Jr tt)o

?1f 2 ttlof)rjf ~7i I , arl(i irl !mt,h Ilarrlilt, orlian arl(i I,agrangiarl tr~’atrrwrlts of th(’ n f 4
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thecry [72] , the chiral transition is of second order. Turning on m~ removes the transition,

and the high and low temperature phases are analytically connected at finite quark mass.

As the gaug~ coupling decreases, however, it is possible that the transition extends out to

finite mq.

For finite m~, (YX) is always non-zero, but may be discontinuous across a transition.

If so, this would signify that the transition is associated with chiral symmetry breaking.

In fact, if chiral symmetry breaking is driven by confinement, as is suggested by all present

evidence, then it may be that, for weak enough gauge collpling, the chiral phase transition

line matches onto the reconfinement transition line, cutting the phase plane in two.

The crucial issue for QCD is whether, for quarks with the actual masses observed in

nature, the transition is first order, second ordel or not present at all. The significance

of this result is twofold. First, planned heavy ion experiments will be able to investigate

hadronic matter at temperatures up to a few hundred MeV. ‘I’he signature of a transition

to a plasma phase depends upon the order of the transition and upon its properties [73] .

Second, as the early universe cools down it passes through the transition. If the transition

is first order, entropy production reduces the baryon to photon ratio, Furthermore, a first

order transition changes the vacuum energy density and thus the cosmological constant.

More exotic scenarios, such as neutron-proton separation [74] , also depend crucially on

the order and strength of the transition.

Last]: the study of the chiral transition is an excellent test of the evolving fcrmion

algorithms. There is some controversy in the results from different algorithms which may

be due to systematic of the algorithm, Here I will only give the status of the results for

nf = 2 and 4.

There is a consensus that for Nt = 4 and 4 flavors of staggered fermiorrs, thcrw is it

stror,g first order chiral transition at small masses, i.e. ma 0.025. On 44 lattices this

transition has been shown to survi\~es up to ma = 0.2 and there is evidence that it exists

for all rnauses [75] . Simulations on a 4 x 6:1 Iat tices show that (~~)ccasm to bc a goml

observable to monitor the transition for rr~a > (),3 [761 , IIowcvor, thv discontinuity iu

(I,)suggests that the transition is still first order for all m.

[Iata on 4 x 83 lattices with al)proximate algorithms is de}mtwl, l~llkllgita et,, al. [77] ,

show ovi(ience for metastahiiilj at m 0.1 whiic (;ot,tiieb et. al, [78] illl(i K;lrsrh (’1,.;II.[7!I]

sov ,1 ciear signai oniy at m – ().()25, [n fig, 4.2, I show resuit,s [Ising t,hr Iiyt}ri(i M()]lte

(;iirlo aigorithm which confirm a Iirst or(ivr transition as evi(ivncwi I)y tllo fli~)-{l(,~)sill

Wilson Ioopsl (1.)an(i ( ~,y) [80] .

h’i[litlly, 011 it [; x 1o:” li~tti~~, Kovii(”s (’t. a/.l8I] Iin(i a first (lr(ivr tri~[)sitiol] at /II~L ().())!L

aiclliittiotl wiii [irl(i lllf’tilxt ilt)ilil, ~ ilt,

Illilt.f’ iil~oritlllll.’+ for ?l~ 2 is t)II(’
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of conflicting evidence. For rzf = 2, Gottlieb et, al. [78] see no clear evidence of a transitiorl

for ma = 0.0125 – 0.2, In contrast, Kogut and Sinclair [82] find a first order transition

for ma = 0.0125, but no transition for ma = 0.025. However, Gavai et, al. [83] do find a

transition for mqa = 0.025, while I;ukugita et. al. ~84] see one for ma = 0.1. We should also

mention that Gavai et. al. [85] find that the transition is first order alonR an interpolation

between nf = 2 and nf = 3 where two quarks are held at ma = 0.025, while the mass of

the third is varied between 0.025 and 00.

Calculations for nf = 2 with an exact algorithm have only been done on a 44 Iattico

at ~-’a = 0,02, One again finds a strong first or(lcr transition [80].

Recently two independent calculations have further confirmed t}lat at 7’ ‘-- T,.

chiral symmetry is restored by showing that parity doublet states, (~ “,0+ ‘) illl(l

(IV( ~+), N“( ~-) ), become degenerate [86] [87] . They also show Lhat the scrortling

!engths for states with these quantum numbers do not become infinite (rnasslcss particlm)

in the limit mq -+ (), Wc have yet to understand }]OWto connect these scrc ling lengths to

physical excitations. So an interesting area for research is to und(!rstand the equation of

state and properties of matter above 7’(:and make connections with heavy ion cxpcrirnents.

The conclusions from present calculations arc 1) there is a definite strong first order

transition at small quark mames for nf = 2,3,4; 2) this transition extends out to suf!i-

cicntly heavy quark mass to cover the physical case of light u, d and the .Y quark and 3) thr

transition tcrnpcrature is between 100 to 170 h4ev, To end on an optimistic no;e, 1 boliovo

that this estimnte will be made more prccisc in thr nmr future nnd numericnl sirlllllaf,iorls

will provide us with sornc information 0]1 t,hc nutllrr of rImtt4’r nbovo 7:..
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